The Future Growth Path for Europe and Ireland

Nicholas Crafts

Irish Fiscal Advisory Council Conference February 22, 2019

Outline

- Focus on medium-term productivity growth
- Consider today's 'productivity paradox': is slow growth the 'new normal'?
- Review recent growth projections
- Note issues around realising growth potential

A New Productivity Paradox

- **TFP growth has slowed down** markedly but technology seems to be advancing rapidly
- Great excitement (or fear) about robots, AI etc.
- We can see the digital revolution everywhere but in the productivity statistics
- A worthy successor to the Solow paradox of 30 years ago

Growth Rates in Different Periods (% per year)

	USA Y/P	USA Y/HW	EU 15 Y/P	EU 15 Y/HW
1950-73	2.5	2.6	4.0	4.9
1973-95	1.7	1.3	1.9	2.5
1995-2007	2.2	2.2	2.0	1.5
2007-16	0.4	0.9	-0.1	0.4
2021-30			0.9	1.1
2019-29	1.2	1.4		

Sources: The Conference Board (2016); European Commission (2018); United States Congressional Budget Office (2019): estimates for EA in 2021-30

Phases of European Growth

- **1950-1973:** rapid catch-up growth; gaps with USA in Y/P and Y/HW falling quickly
- 1973-1995: catch-up in Y/P ceases but catch up in Y/HW to slower growing USA
- **1995-2007**: Europe no longer catching up but falling behind; Y/HW grows faster in USA
- 2020s: Europe struggling to keep up with sluggish growth in USA??

Future TFP Growth in the Leader

- Very wide range of (implied) projections for medium-term TFP growth among technology pundits
- Gordon (2016): 0.4 % per year
- Brynjolfsson and McAfee (2014): 2.0% per year
- 'Techno-optimism' not reflected in recent econometric estimates of trend productivity growth

OECD Estimates of Trend Productivity Growth (% per year)

	TFP			Y/L		
	2000	2007	2015	2000	2007	2015
Euro Area	0.6	0.2	0.2	1.2	0.7	0.3
Ireland	2.1	1.0	0.9	3.2	2.6	2.5
UK	1.1	0.0	0.4	2.1	0.9	0.9
United States	1.1	0.9	0.7	2.0	1.5	1.0

Note: estimates obtained using an HP-filter methodology.

Source: Ollivaud et al. (2016)

Possible Resolutions of the New Productivity Paradox (1)

- Economic growth is faster than is captured by the national accounts and this discrepancy has increased recently (Brynjolfsson and McAfee, 2014)
- Estimates of trend productivity growth are unreliable and not necessarily a good guide to the future (Crafts and Mills, 2017)
- The financial crisis has adversely affected productivity growth but, post crisis, normal trend growth will eventually resume (OECD 2014)

Possible Resolutions (2)

- Important new technologies will have a strong impact on productivity only after a significant time lag (Brynjolfsson and McAfee, 2014)
- The new technologies may seem impressive but their economic impact is and will be modest; they will not match the 'great inventions' of the past (Gordon, 2016)

U.S. Slowdown is Not Mis-Measurement

- **Consensus** in recent papers (Aghion et al., 2017; Byrne et al., 2016; Syverson, 2017); but growth continues to be underestimated
- Significant fraction of welfare gains from digital economy are household production and won't/shouldn't be captured in GDP (Ahmad and Schreyer, 2016)
- NB: 'Missing output' = \$2.7 trillion but estimates of omitted consumer surplus <5 per cent of this (Syverson, 2017)

Past U. S. TFP Growth

(Crafts and Mills, 2017)

- Trend TFP growth has declined slowly from 1.5% to 1% per year in the last 50 years based on smoothed full-sample estimates of an unobserved-components model in which trend growth follows a random walk
- However, average TFP growth outcomes over a 10-year period vary a lot
- Making a 10-year ahead projection using trends inferred from estimating the model on past information does not work well

Econometrics vs. Techno-Optimism

- Recent econometric estimates of trend U.S. TFP growth show a big fall (Antolin-Diaz et al., 2017; Ollivaud et al., 2016)
- Using similar methods, one would have been quite pessimistic ex ante in 1992 about medium-term TFP growth but seriously wrong ex-post
- 'Techno-optimists' may be wrong but should not be too dismayed by econometricians

Productivity Impact of Financial Crisis

- Expect levels effect: long-run impact on labour productivity = 1.1% per year of crisis (Oulton and Sebastia-Barrel, 2017)
- Short-run impacts from impaired resource reallocation (Adalat McGowan et al., 2017; Gamberoni et al., 2016; Schneider, 2018)
- TFP growth has fallen by more in firms which had weak balance sheets and suffered bigger interruption of credit supply; might account for 1/3 TFP growth slowdown in OECD countries through 2013 (Duval et al., 2017)

General Purpose Technologies

- Macro-productivity implications typically modest initially: arithmetic of growth accounting, time to realise full potential and make complementary investments
- Solow Paradox based on unrealistic expectations; actually ICT had strong and relatively rapid impact
- Possible that GPT can have big cumulative effect but never raise the aggregate productivity growth rate very much (e.g., steam)

GPTs: Contributions to Labour Productivity Growth

(% per year)

	K/L	TFP	Total
Steam (UK)			
1760-1830	0.011	0.003	0.014
1830-1870	0.18	0.12	0.30
1870-1910	0.15	0.16	0.31
Electricity (USA)			
1899-1919	0.04	0.06	0.10
1919-1929 (1)	0.07	0.07	0.14
1919-1929 (2)	0.07	0.30	0.37
1929-1941	0.04	0.16	0.20
ICT (USA)			
1974-1995	0.41	0.36	0.77
1995-2004	0.78	0.72	1.50
2004-2012	0.36	0.28	0.64

Sources: Bakker et al. (2018), Byrne et al. (2013) and Crafts (2004).

The New Productivity Paradox: Half-Time Score

- The productivity slowdown is real but not necessarily permanent
- Estimates of trend TFP growth are not a good guide to the medium-term future
- Perhaps another case of Amara's Law in context of GPT
- A worthy successor to the Solow Productivity paradox

Growth Projections: European Commission

(% per year)

	Euro Area	Ireland	Germany	Italy
2021-2030				
Real GDP	1.1	1.8	1.1	0.5
Y/HW	1.1	1.4	1.5	0.3
TFP	0.7	1.2	0.9	0.2
ΔL/L	0.0	0.4	-0.4	0.2
2031-2040				
Real GDP	1.1	1.9	1.1	0.3
Y/HW	1.3	1.6	1.5	0.9
TFP	0.9	0.9	0.9	0.6
ΔL/L	-0.2	0.3	-0.4	-0.6

Source: European Commission (2018).

Comment

- EC takes cautious position on future TFP growth
- History suggests that a positive technology shock in the USA (similar to electricity in 20th century) could make things look quite a bit better
- Supply-side reform could make some difference
- Cette et al. (2017) explore these possibilities and have an interactive ready reckoner for different permutations in a Solow growth framework at <u>www.longtermproductivity.com</u>

Projected Growth 2015-2060: Secular Stagnation vs. Technology Shock (% per year)

	USA	Euro Area (1)	Euro Area (2)
Secular Stagnation			
Real GDP	1.5	1.1	1.3
TFP	0.6	0.8	1.0
Technology Shock			
Real GDP	3.3	2.4	2.8
TFP	1.6	1.6	1.8

A More Challenging Projection

McQuinn & Whelan, 2015

- Recent TFP growth is the 'new normal'; in Euro Area steady state ΔA/A = 0.2%, Δ(Y/HW)/(Y/HW) = 0.3%
- Baseline projection for 2014-33, $\Delta Y/Y = 0.4\%$ (Ireland = 1.05%), $\Delta (Y/HW)/(Y/HW) = 0.6\%$ (Ireland = 0.9%)
- Supply-side reforms might add 1.0% per year to Euro Area GDP growth politics permitting - but only 0.15% to Irish growth
- Steady-state TFP growth matches a very sobering 'semi-endogenous growth' world view

Are Ideas Getting Much Harder to Find?

- Bloom et al. (2017): Yes! since 1930s rising research intensity but falling TFP growth such that the number of researchers has to double every 13 years just to maintain TFP growth
- It's a semi-endogenous growth story where past TFP growth largely reflects the transitory impact of increases in R & D/GDP
- If this is the right model, given that U.S. employment growth will decline markedly, Gordon is too optimistic; steady state TFP growth could be as slow as 0.25% per year (Kruse-Andersen, 2017)

Perhaps Not?

- TFP ≠ technological progress; 1930s' TFP growth not highly correlated with R & D (Bakker et al., 2018)
- Other indicators are less pessimistic for growth prospects; half-life for patents = 114 years and for tech books no diminishing returns
- A techno-optimistic view would be that productivity of R & D might increase significantly in digital world through much better data analysis and recombinant innovation (Mokyr, 2013)

R & D and the Production of Ideas in the United States, 1955-2010(1965 = 100)

	R & D	(R & D)/GDP (%)	New Tech Books	Patents
1955	68.2	1.45	51.8	
1965	100.0	2.72	100.0	100.0
1980	162.8	2.21	198.1	78.4
1995	258.1	2.40	301.2	124.2
2010	375.1	2.73		214.5

Notes: tech books based on titles in the catalogue of the Library of Congress; patents are those of domestic origin; all data are 5-year averages. *Sources*: Alexopoulos and Cohen (2011); National Science Foundation (2017); United States Patent and Trademark Office (2016)

Taking Full Advantage

- New technology at frontier provides growth opportunity but effective assimilation by individual countries not automatic, as ICT era underlined
- Labour market adjustment is a key aspect
- Absorptive capacity is central and should be a focal point for supply-side reform; this is a key message for Ireland (Jin and Westmore, 2018)
- More broadly, Ireland may have more scope to improve supply-side than is allowed by conventional wisdom about structural reforms

Irish Competitiveness Aspects: DTF Scores

Corporate Tax Rate (2017)	100.00	Logistics Infrastructure (2016)	50.37
Tangible Investment (average 1997-2017)	100.00	Annual Hours in Congestion (2015)	43.06
Intangible Investment (average 2000-2013)	94.03	Product Market Regulation (2013)	35.37
Competition Law and Policy (2013)	65.94	Adult Literacy & Numeracy Skills (2013)	29.89
Ease of Doing Business (2017)	62.00	Management Quality (average 2004-2014)	20.24
Employment Protection (2017)	60.96	R & D (2016)	16.96
PISA Maths & Science Score (2015)	60.87		

Source: database for Crafts (2018a)

Some Technology Analysis

- Median American job has 64% chance of being computerized by 2035; (Frey & Osborne, 2017); median OECD job has 48% chance (Nedelkoska & Quintini, 2018)
- Al has the potential to raise average labour productivity by 30-35 per cent over the next 20 years (Frontier Economics, 2016)
- So rapid productivity growth after the usual GPT delay ... but low education/low-wage workers will be most vulnerable to job losses
- Key issue to realise potential gain in Y/P will be successful redeployment of these workers

Skill-Bias and Unemployment

- Europe much less good at coping with skill-biased technological changes than USA
- Model automation shock as raising dispersion of worker productivities in search and matching setting; impact of 0.4 ppts in USA compares with 4.8 ppts for Europe (Mortensen & Pissarides, 1999)
- Relatively high unemployment benefits and employment protection explain European 'failure'
- Well-designed (but unpopular) labour market policies will be essential to restrain rise in U; flexible labour market plus ALMP

Exposure to Skill-Bias of Technological Change

	Low Educational Attainment (%)	Unemployment Rate of Low Educated (%)	Employment Protection (0-6)	Net Replacement Rate (%)
France	22	26.3	2.38	59
Germany	13	15.2	2.87	94
Ireland	18	19.7	1.40	89
Italy	39	23.8	2.51	77
Spain	42	27.8	2.05	74
υκ	19	9.5	1.03	78
USA	10	13.2	0.26	59

Source: Crafts (2018b) based on OECD data.

Conclusions

- Future TFP growth is highly uncertain
- Even so, techno-optimism appeals more than econometric pessimism; waiting for economic impact of new GPT seems plausible resolution of productivity paradox
- In whichever scenario, expect Ireland to grow faster than the Euro Area
- Dealing with the skill bias of technological change is likely to be a serious policy challenge