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Abstract 

This paper develops a forecasting model of the Irish macroeconomy using a large 

Bayesian Vector Auto-Regression (VAR) model. We show that large Bayesian VARs 

can be a useful tool in forecasting Ireland’s macroeconomy. We analyse the 

performance of the large Bayesian VAR at forecasting 20 macroeconomic variables 

for Ireland and find that it performs relatively well versus naïve models, ARIMA 

models, smaller VARs, and Factor-Augmented VARs. In particular, we find that the 

model performs well at forecasting variables that capture the underlying 

performance of the Irish macroeconomy. 
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1. Introduction 

Formulating appropriate macroeconomic and fiscal policy requires “knowledge” of 

the future state of the economy. Yet, a wide range of dynamics can affect the 

economy in the short run. Forecasting the macroeconomy accurately may therefore 

require us to draw on information from a large number of variables.  

There are challenges when using more variables. Often, historical data availability is 

limited. Modelling the macroeconomy in a system gives rise to a large number of 

parameters, which need to be estimated with only a limited data set. This problem 

is often referred to as the “curse of dimensionality”. This can in turn lead to in-

sample overfitting and large out-of-sample forecasting errors. A common means of 

forecasting the macroeconomy is by using a Vector Auto-regression (VAR) model. 

VAR models have a long history of being a useful tool for the macroeconomist in 

forecasting and policy analysis.   

To avoid the “curse of dimensionality”, conventional VARs usually only consist of a 

small number of variables. However, estimating VARs with a relatively small number 

of variables can create an omitted variable problem, leaving out potentially useful 

information, which can contribute to poor out-of-sample forecasting performance. 

 This paper builds a large Bayesian VAR model for forecasting Ireland’s underlying 

macroeconomy. We use the technique of “Bayesian shrinkage” to handle a large 

number of variables in a VAR framework. That is, we increase the tightness of the 

prior distribution around its central estimate as the number of variables increases. 

This reduces overfitting that occurs in larger conventional VARs and reducing the 

impact of omitted variable problems that smaller VARs are prone to. As Bańbura et 

al. (2010) have shown, large Bayesian VARs offer an alternative to factor models for 

analysis and forecasting of large dynamic systems. Using Bayesian shrinkage allows 

the modeller to include a larger information set in modelling the macroeconomy. 

For instance, information on business and consumer sentiment can be included 

alongside more disaggregated variables that may provide vital information for 

providing accurate forecasts of key macroeconomic variables. 

We evaluate the forecasting accuracy of the large Bayesian VAR using a number of 

metrics. First, the forecasting performance of the large Bayesian VAR is compared to 
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that of a small VAR with only a few key variables. Secondly, we compare the 

forecasting performance of the large Bayesian VAR to a Factor-Augmented VAR. We 

extend on previous literature by assessing the forecasting performance of the large 

Bayesian VAR for a wider set of variables than is common practice. Typical in the 

literature for large Bayesian VARs is to investigate the performance in forecasting 

only a small number of variables—usually only three. We investigate whether a large 

Bayesian VAR can be useful in forecasting as many as 20 variables. We compare the 

forecasting performance of the large Bayesian VAR to a naïve forecast, and to an 

ARMA forecast for each of the 20 variables. We also report the root mean squared 

forecast error for these variables. Based on these metrics, the Large Bayesian VAR 

performs favourably for a number of underlying variables for the Irish 

macroeconomy. For instance, the model performs relatively well at forecasting the 

annual growth rates of underlying variables such as Underlying Domestic Demand, 

Employment, Government Consumption, Personal Consumption, Disposable 

Income, and also performs relatively well at forecasting growth rates of headline 

variables such as GDP, GNP, Exports and Imports. 

Large Bayesian VARs have been used for forecasting, policy analysis, and analysis of 

shock transmission. Bańbura et al. (2010), studying the US economy, show that 

large Bayesian VARs have a superior forecasting performance to that of smaller VARs 

and Factor Augmented VARs. This is a finding that is repeated in the literature. Gupt 

& Kabundi (2010) find that, in general, large Bayesian VARs outperform smaller 

conventional VARs, smaller Bayesian VARs, dynamic factor models and a small open 

economy DSGE model in forecasting the South African macroeconomy. Koop (2013) 

investigate how the forecasting performance of large Bayesian VARs varies with 

different priors and finds that large Bayesian VARs tend to have a better forecasting 

performance than that of factor models and find that the simple Minnesota prior 

performs relatively well in forecasting. Large Bayesian VARs have been used to 

estimate the effects of policy on outcomes. De Menezes Barboz & Vasconcelos 

(2019) show, using a large Bayesian VAR, that the Brazilian Development Bank had a 

positive impact on Brazilian aggregate investment. Bloor & Matheson use a large 

Bayesian VAR to analyse the transmission mechanism of shocks to monetary policy, 

net migration and climate for the New Zealand economy. 
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In an Irish setting, several different approaches to forecasting the macroeconomy, 

exist or have been attempted. Short-run models for key macroeconomic variables 

have been developed using a suite of models approach (Conroy & Casey, 2017). 

Medium term forecasts have been developed using the HERMES model (Bergin et 

al., 2013), and more recently using the COSMO structural model (Bergin et al., 2017). 

In the past, Bayesian VAR models have been used to forecast inflation in Ireland 

(Kenny et al., 1998), although, the Bayesian VARs estimated in this case were of a 

more conventional size (3-5 variables). In addition, estimates and forecasts of the 

supply side of the Irish economy have been developed in recent years (Casey, 2019; 

Murphy et al. 2018). 

The approach of this paper is not necessarily to create competing forecasts, but 

instead, to create complementary forecasts of the Irish economy. Large scale 

Bayesian Vector Autoregressions are largely a “black box” and it can be difficult to 

disentangle why a given variable is displaying certain dynamics. To that end, models 

such as those in Conroy & Casey (2017) can provide a useful complement to the 

model outlined in this paper, by providing more granular information about the 

drivers of different variables. To the extent that different sets of models diverge, this 

divergence can also provide useful information. This will allow the practitioner to 

highlight potential problems in their modelling tool kit and—one would hope—

eventually improve their forecasts. 
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2. Methodology 

The model we employ follows that of Bańbura et al. (2010) closely. Using a standard 

VAR setup, let 𝑌𝑡 = (𝑦1,𝑡 , 𝑦2,𝑡 ,… 𝑦𝑛,𝑡) be a large vector of random variables. Then, a 

VAR(p) model is given by: 

𝑌𝑡 = 𝑐 + 𝐴1𝑌𝑡−1 +⋯+ 𝐴𝑝𝑌𝑡−𝑝 + 𝑢𝑡 (1) 

Where 𝐴1,… ,𝐴𝑝 are matrices of dimension 𝑛 × 𝑛;   𝑢𝑡  is an n-dimensional normally 

distributed white noise process with covariance matrix 𝔼𝑢𝑡𝑢𝑡
′ =  Ψ;  𝑐 = (𝑐1, … 𝑐𝑛) is 

an n-dimensional vector of constants. 

The model is estimated using the Bayesian VAR approach, and following the 

literature, a Minnesota type prior is used (Litterman, 1986). In particular, we use a 

natural conjugate extension of the Minnesota prior, which has been used 

extensively in estimation of large Bayesian VARs. Koop (2013) find that this 

Minnesota prior forecasts relatively well, in comparison to other priors, in medium 

and large VARs and has the added benefit of being computationally straightforward 

to implement.2 Under a Minnesota type prior, each equation is centred around a 

random walk with drift: 

𝑌𝑡 = 𝑐 + 𝑌𝑡−1 + 𝑢𝑡 (2) 

which essentially shrinks the diagonal coefficients in 𝐴1 towards one, and all other 

coefficients towards zero. Under this prior, more recent lags provide more 

information than previous lags, and the “own” lags explain more variation than the 

lags of other variables. The priors are imposed by setting the moments of the prior 

distribution of the coefficients: 

𝔼[(𝐴𝑘)𝑖,𝑗] =  {
𝛿𝑖 , 𝑗 = 𝑖, 𝑘 = 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

, 𝕍[(𝐴𝑘)𝑖,𝑗] =  

{
 
 

 
 𝜆2

𝑘2
,                    𝑗 = 𝑖

𝜗
𝜆2

𝑘2
𝜎𝑖
2

𝜎𝑗
2 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (3) 

 
2 For instance, the direct forecasting method can be used and predictive simulation is not required 
in this case. See Appendix B for further details. 
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The coefficients 𝐴1,… ,𝐴𝑝 are assumed to be independent and normally distributed. 

The prior on the intercept is diffuse, while the covariance matrix of residuals is 

assumed to be diagonal, fixed and known (Ψ =  Σ, where Σ = (𝜎𝑖
2,… , 𝜎𝑛

2 )). 

Setting 𝛿𝑖 = 1 is equivalent to a random walk prior, which is appropriate for 

variables that have high persistence and are not characterised by mean reversion. 

However, for variables that are characterised by mean reversion, a more 

appropriate prior would be setting 𝛿𝑖 = 0. This is the equivalent of setting a white 

noise prior. In other words, 𝛿𝑖 = 0 is appropriate for variables that are stationary, or 

𝐼(0), whereas, setting 𝛿𝑖 = 1 would be appropriate for variables that are stationary 

after taking the first difference, i.e. 𝐼(1).3 

The hyperparameter 𝜆 controls the overall tightness of the prior distribution around 

the central estimate for the prior. The relative weight attached to the prior beliefs 

with respect to the data is determined by 𝜆.  Setting 𝜆 = 0, imposes the prior 

exactly: that is, the data does not influence the parameter estimates, and our prior 

then becomes our estimate. Setting 𝜆 =  ∞, negates the influence of the prior, and 

the estimates of the parameters are equivalent to ordinary least squares (OLS) 

estimates. As argued by Bańbura et al. (2010) and shown formally by De Mol et al. 

(2008), the overall tightness of the parameters, 𝜆, should be set relative to the size of 

the system. As the size of the system becomes larger, more shrinkage should be 

applied to the parameters in order to avoid over-fitting.  

As the lag length increases, the prior variance decreases by the factor 1 𝑘2⁄ . The 

factor 𝜎𝑖
2 𝜎𝑗

2⁄  is used to account for the differences in scales and variance of the 

different time series. Finally, the coefficient 𝜗 ∈ (0,1) determines how important 

lags of other variables are relative to own lags. A normal Wishart prior is imposed in 

order to take into account the possibility that there is correlation among the 

residuals of different variables. This prior retains the principles of a Minnesota prior 

under the condition that 𝜗 = 1. See Appendix B for a mathematical description of 

the implantation of the Minnesota prior. 

 
3 𝐼(𝑑) represents the order of integration, that is the number of times, 𝑑, that a variable must be 
differenced in order to achieve stationarity.  
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Up to now, the model outlined here assumes a symmetric form, that is, each 

variable is assumed to be endogenous. However, as Ireland is a small open 

economy, foreign variables will have an effect on domestic variables and the 

corresponding effect of Irish variables on foreign variables will be relatively limited. 

As such, the approach we take here is to treat the foreign variables as exogenous to 

the domestic variables. This is a similar approach taken to estimates of large 

Bayesian VARs for other small open economies such as for South Africa (Gupta & 

Kabundi, 2010) and for New Zealand (Bloor & Matheson, 2009). Both Gupta & 

Kabundi (2010), and Bloor & Matheson (2009) estimate the Bayesian VAR by dividing 

the variables into blocks, a domestic block, which depends on foreign and domestic 

variables, and a foreign block which depends on foreign variables only. However, we 

differ from these approaches in that we do not explicitly model the foreign variables 

within the Bayesian VAR framework. That is, the foreign variables are treated as 

entirely exogenous to the Bayesian VAR and are forecasted in a separate exercise to 

the model presented here.4 The implementation of the foreign variables as 

exogenous to the rest of the model is discussed further in Appendix B.  

  

 
4 The exogenous variables are derived separately. For example, the external demand variables are 
built up based on weighted imports growth for Ireland’s main trading partners. The forecasts of 
these exogenous variables are derived using forecasts for imports growth from international 
forecasting bodies such as the OECD or the IMF. When calibrating 𝜆 and evaluating the models 
forecasting performance, realised values of these foreign variables are used, as opposed to real 

time values. That is, when forecasting out-of-sample, the realised values for these exogenous 
variables are used as inputs in estimating the forecasts of the endogenous variables. This may 
improve the forecasting performance of the model, but it will also isolate the forecasting error 
that is solely attributed to the large Bayesian VAR, as opposed to an error that is also partly a 
result of an error in forecasting the exogenous variables. As such, this approach provides a cleaner 
evaluation of the models forecasting performance. 
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3. Data and Estimation 

We use a dataset of 46 variables, drawing from a broad category of variables that are 

relevant to the Irish macroeconomy, such as, national account data, labour market 

data, financial data and some variables with an international dimension. The data 

spans from Q1 2000 to Q4 2018. Data are seasonally adjusted, where needed, using 

the US Census Bureau’s X-13 ARIMA SEATS procedure.5 Data are transformed to 

logarithms for all variables, except those that are in rates. Where needed, we 

difference variables to achieve stationarity. Details on the variables used and the 

transformations applied are in Appendix A.  

As all variables are transformed to stationarity, the white noise prior is used. That is, 

𝛿𝑖 = 0 for all variables. As is convention with quarterly models of this type in the 

literature, a lag length of 4 was chosen.6 

As the choice of 𝜆 is largely arbitrary, in calibrating 𝜆, we follow the procedure of 

Bańbura et al. (2010). That is, we choose the value of 𝜆 that achieves a similar fit, for 

key variables in the large BVAR, as that of a small VAR with the same key variables. 

The standard choice of variables in the literature for the small VAR is to have a three 

variable VAR, usually with GDP/employment, consumer price index (CPI), and the 

interest rate. For instance, Bańbura et al. (2010) calibrate 𝜆 using a three variable 

VAR of employment, CPI and Federal Funds Rate. However, there are a number of 

reasons why both the size, and the choice of variables for the small VAR might not 

be entirely appropriate for Ireland. First, as a small open economy, Ireland’s 

macroeconomy is significantly influenced by external demand. Second, Ireland’s 

national account statistics are heavily distorted by the presence of multinationals, 

and as such, variables such as GDP are not representative of the underlying 

production in the macroeconomy. In the same vein as Bloor & Matheson (2009), to 

address some of these issues, we use a slightly larger VAR, to calibrate 𝜆. We use a 

five variable VAR, with Underlying Domestic Demand (UDD), wages, employment,  

 
5 Where seasonally adjusted variables are already readily available these are used. This is often the 
case for variables from the CSO. The CSO seasonally adjust variables using the same US Census 
Bureau seasonal adjustment process. 
6 Arbitrarily setting the lag length in this fashion is not uncommon in the literature for large 
Bayesian VARs, see for instance, Domit et al. (2019). A similar approach to estimating a large 
Bayesian VAR for New Zealand using quarterly data was taken by Bloor & Matheson (2009). 
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the ECB deposit rate, and one external demand variable which is treated as 

exogenous.7,8 However, Ireland is a member of a monetary union. Therefore, while 

the ECB deposit rate is important in determining the supply and the demand for 

credit in Ireland, the degree to which the Irish macroeconomy has a bearing on how 

the deposit rate is set is minimal. Forecasting the deposit rate solely on the basis of 

Irish variables would therefore not be appropriate. Additionally, the goal of this 

paper is not to forecast the deposit rate. Therefore, when determining 𝜆 we 

minimise the difference in the fit of the three key variables (UDD, wages and 

employment) between the smaller five variable VAR and the larger 46 variable VAR. 

More formally, 𝜆 is chosen using the following equation: 

𝜆𝑚(𝐹𝑖𝑡) = arg𝑀𝑖𝑛𝜆 |𝐹𝑖𝑡 − 
1

3
∑

𝑀𝑆𝐹𝐸𝑖
(𝜆 ,m)

𝑀𝑆𝐹𝐸
𝑖

(0)

𝑖 ∈𝑊

| (4) 

Where MSFE is the one step-ahead mean squared forecast error, for horizon of 

length 𝐻, and is given by: 

𝑀𝑆𝐹𝐸𝑖,ℎ
(𝜆 ,m)

=
1

𝑇1 − 𝑇0 − 𝐻 + 1
∑ (𝑦𝑖,𝑇+ℎ|𝑇

(𝜆,𝑚) − 𝑦𝑖,𝑇+ℎ)
2

𝑇1−ℎ

𝑇=𝑇0+𝐻−ℎ

 (5) 

Where, for a given model, 𝑚, and tightness given by 𝜆, the h-step ahead forecast for 

variable 𝑦𝑖 is given by 𝑦𝑖,𝑇+ℎ|𝑇
(𝜆,𝑚) . 𝑀𝑆𝐹𝐸𝑖

(0)
 is the h-step ahead mean square forecast 

error for the model where the prior is imposed exactly, that is, 𝜆 = 0. The purpose of 

this term is to account for the differences in the relative scales of the variables.  

Finally,  𝐹𝑖𝑡 is given by: 

 
7 Underlying Domestic Demand is an indicator that contains Personal Consumption Expenditure, 
Government Consumption and Underlying Investment. Underlying investment strips out 
intangibles and aircraft investment as these are, largely, imported and are therefore largely GDP 
neutral. 
8The external demand variable is the simple average of an index for external goods demanded and 
an index of external services demanded The indices for goods and for services demanded are 
compiled by taking the share of each trading partner’s exports of goods and of services from 
Ireland, and growing these exports forward based on the forecasts of the trading partner’s 
demand for imports of goods (for goods) and of combined goods and services (for services). This is 
then aggregated into world-demand indices for goods and for services. 
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𝐹𝑖𝑡 =
1

3
∑

𝑀𝑆𝐹𝐸𝑖
(𝜆 ,m)

𝑀𝑆𝐹𝐸
𝑖

(0)
 

𝑖 ∈𝑊

|

𝜆= ∞,𝑚=𝑆𝑀𝐴𝐿𝐿

 (6) 

Where 𝑤 = {𝑈𝐷𝐷, 𝑤𝑎𝑔𝑒𝑠, 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡} and the model SMALL consists of 

variables UDD, wages, employment, the ECB’s deposit rate, and an external demand 

variable. 

The overall tightness, 𝜆, was estimated using a training sample period from Q1 2000 

to Q4 2009. The tightness parameter, 𝜆, is then kept constant for evaluating the out-

of-sample performance. The plot of the absolute difference of the MSFE for the 

small VAR and the large Bayesian VAR is shown for various values for 𝜆 is shown in 

Figure C1 in Appendix C. 
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4. Forecasting Performance 

To evaluate the model performance, the out-of-sample forecasting accuracy was 

investigated across several metrics and over a number of different horizons.9 We 

assess out-of-sample forecast performance using four-quarter ahead year-on-year 

growth rates and the four-quarter ahead annualised growth rates.10  The four-

quarter-ahead year-on-year forecast can be thought of as a means of assessing the 

performance at a particular future point in time. Whereas the four-quarter-ahead 

annualised forecast is an accumulation of forecasts over a period of time and can 

therefore, be thought of as a means of assessing the cumulative forecast 

performance over that horizon.  

One metric by which to assess the forecasting performance against, is to compare 

the errors of the large Bayesian VAR with that of other models. The standard 

approach in the literature to assess the performance of large Bayesian VAR models 

is to compare it to that of the smaller VAR of key variables that is used in calibrating 

𝜆. This is one of the approaches taken here. Another approach taken in the literature 

is to evaluate the forecasting performance of the large Bayesian VAR for key 

variables against that of a Factor-Augmented VAR. The Factor-Augmented VAR 

makes use of all the same data as the large Bayesian VAR, but instead of using 

shrinkage on the parameters, extracts a number of factors from the data, to reduce 

the dimensions and overcome the “curse of dimensionality”.  

Unlike most of the previous studies in this literature—where the focus is typically 

only on a few variables—we investigate the forecasting performance for a wide 

range of variables. We assess the performance of the large Bayesian VAR in 

forecasting 20 variables of the Irish macroeconomy. We assess these based on 

metrics such as Theil’s U2, the Root Mean Squared Forecast error (RMSFE), and 

against the forecasts of ARMA models for each of the variables.  

A qualitive analysis is also carried out to assess the model’s performance in 

forecasting recent turning points in several key variables for Irish economic data. 

 
9 Real time data is not used in evaluating the out-of-sample forecasting performance. 
10 For variables in rates, such as the Unemployment rate, the 4 quarter ahead forecasted change in 
the rate is assessed. 
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4.1  Relative  Fore casting p erformance  with  the Small VAR  

Following the convention in the literature, the relative out-of-sample forecasting 

performance of the large Bayesian VAR versus the small VAR is assessed using the 

following formula: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑆𝐹𝐸𝑖 =
𝑀𝑆𝐹𝐸𝑖

(𝜆 ,m)

𝑀𝑆𝐹𝐸
𝑖

(𝑀𝑜𝑑𝑒𝑙)
 (7) 

where, in this case 𝑀𝑜𝑑𝑒𝑙 =  𝑆𝑀𝐴𝐿𝐿. Given that the metric outlined in equation 7 is 

non-linear, care should be taken when interpreting the relative MSFE. While a value 

below (above) one indicates that the Large Bayesian VAR overperformed 

(underperformed) the small VAR in forecasting, the magnitude of the 

overperformance/underperformance is not linearly comparable. For instance, a 

value of 2 for the relative MSFE, would indicate that the small VAR was twice as good 

as the large Bayesian VAR at forecasting a particular variable, while in the other 

direction, a value of 0.5 would indicate that the large Bayesian VAR was twice as 

good as the small VAR at forecasting the same variable. 

Figure 1 shows a plot of the relative MSFE for the four quarter ahead year-on-year 

growth rate and for the one year ahead annualised growth rate for the key variables. 

The large Bayesian VAR outperforms the forecasting performance of the small VAR 

for both Underlying Domestic Demand and Employment. The large Bayesian VAR 

performs roughly twice as well as that of the small VAR in forecasting these 

variables. It performs on a par with the forecasts for wages, (the small VAR being 

marginally better, see Table D1).  

While the sample size is small (only 36 observations), we also use the Diebold-

Mariano test to compare the predictive accuracy and test whether the two forecasts 

are statistically different from each other (see Diebold & Mariano, 2002). The large 

Bayesian VARs forecasts for the annualised growth rate of Employment are 

statistically different from those of the small VAR at a 10 per cent significance level 

(see Table D1). All other forecasts in this case are not statistically different from each 

other according to the Diebold-Mariano test. 
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Figure 1: Relative MSFE of the large Bayesian VAR versus the Small VAR for 

Q1 2010 to Q4 2018 

 
Sources: Author’s calculations. 
Note: The Vertical black line marks the relative MSFE value of one. Values below one indicates that 
the large Bayesian VAR has a superior forecasting performance to the small VAR. Corresponding 
values are presented in Appendix Table D1. 

4.2  Relative  Fore casting performance  with  the Factor-

Augmented VAR 

Next, we turn to comparing the large Bayesian VAR with a Factor-Augmented VAR. 

Factor models have been used to extract relevant information from a large amount 

of data and summarise the data in a small number of factors. This greatly reduces 

the dimensions of the data. This approach to handling large datasets is another way 

of overcoming the “curse of dimensionality”. The approach we take here is to 

extract principle components from the data and then include these principle 

components in a VAR framework. More specifically, we use the same three key 

variables in the small VAR (wages, UDD, employment) and augment the VAR with 

principle components. This is known as a Factor-Augmented VAR.11 Comparing the 

performance of the large Bayesian VAR with that of the Factor-Augmented VAR has 

the added benefit that both models are based on the exact same information set. 

As with the large Bayesian VAR, all variables are transformed to stationarity. 

Variables are then standardised before principle components are extracted.12 We 

experimented with using several different principle components and using a 

number of different lags for the Factor-Augmented VAR. However, using one 

 
11 For a detailed outline of the Factor-Augmented VAR modelling approach, see, amongst others, 

Bernanke et al. (2005). 
12 This is the standard approach to extracting principle components because principle 
components are not scale invariant.  
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principle component and one lag achieved the best out-of-sample forecasting 

performance.13 

Using the relative MSFE to compare the forecasting performances of the two 

models, Figure 2 shows a plot of the four-quarter-ahead year-on-year growth rate 

and for the four-quarter-ahead annualised growth rate for the three key variables. 

The large Bayesian VAR performs better than the Factor-Augmented VAR at 

forecasting each of the three key variables. The large Bayesian VAR performs 

approximately twice as well as the Factor-Augmented VAR in forecasting Wages, and 

roughly five to eight times better at forecasting UDD and Employment. However, 

using the Diebold-Marino test, the forecasts of the large Bayesian VAR and the 

Factor-Augmented VAR were not statistically different from each other (Table D.2). 

Figure 2: Relative MSFE of the large Bayesian VAR versus the Factor-

Augmented VAR 

 
Sources: Author’s calculations. 
Note: The Vertical black line marks the relative MSFE value of one. Values below one indicates that 
the large Bayesian VAR has a superior forecasting performance to the Factor-Augmented VAR. 
Corresponding values are presented in Appendix Table D2. 
 

The usefulness of interpreting Figures 1 and 2 in evaluating the forecasting 

performance of the large Bayesian VAR is entirely dependent on how good the small 

VAR and the Factor-Augmented VAR are in forecasting these variables. If either the 

small VAR or the Factor-Augmented VAR are not good at forecasting the variables in 

question, then Figure 1 and 2 will tell us little about the forecasting performance of 

the large Bayesian VAR. Figures 1 and 2 will simply only tells us that the large 

Bayesian VAR is better at forecasting than the small VAR or the Factor-Augmented 

 
13 The first principle component accounted for 22.7 per cent of the variance in the data. 
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VAR. As a result, other metrics are needed to evaluate the forecasting performance 

of the large Bayesian VAR. These are discussed in the following section. 

 

4.3  Evaluating the models fore casting performance of a wider 

range of variable s  

This section assesses a wider set of variables for the models’ out-of-sample 

forecasting performance. We do so for four-quarters-ahead year-on-year growth 

rates and the four-quarter-ahead annualised forecast. In particular, we evaluate the 

forecasting performance of the variables based on Theil’s U2, which compares the 

forecast of the large Bayesian VAR with that of a naïve forecast. The naïve forecast is 

simply a prediction that the forecast value will be the same as the current value. 

That is, for a four-quarter-ahead year-on-year growth rate forecast, the forecasted 

value will be the same as the year-on-year growth rate for the current quarter. 

Formally, Theil’s U2 for each variable for a four quarter ahead forecast, is calculated 

as:  

𝑈2 =  √

1
𝐻
∑ (

𝑦̂𝑡+4 − 𝑦𝑡+4
𝑦𝑡

)
2

𝐻
𝑡=1

1
𝐻
∑ (

𝑦𝑡 − 𝑦𝑡+4
𝑦𝑡

)
2

𝐻
𝑡=1

 (8) 

Similar to the Relative MSFE, Theil’s U2, values below one indicates a superior 

forecast performance of the large Bayesian VAR to the naïve forecast for that 

variable. 

A second metric used is the Root Mean Squared Forecast error. This is similar to that 

the Mean Squared Forecast error in equation 5, but the square root of this value is 

taken as the metric. The Root Mean Squared Forecast error is a measure of how 

concentrated the errors are around the actual value. 

Finally, the performance of the forecast of each variable is compared to the forecast 

of an ARMA model for that variable. The ARMA model for each variable is selected 

using a stepwise algorithm of Hyndman & Khandakar (2008), based on the AIC for 
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each model.14 The relative performance for each variable of the large Bayesian VAR 

is assessed using the same formula as in equation 7 but with 𝑀𝑆𝐹𝐸𝑖
(𝐴𝑅𝑀𝐴)

 as the 

denominator.  

Figure 3: Theil’s U2 Q1 2010 to Q4 2018 

Sources: Author’s calculations. 

Note: The Vertical black line marks the Theil’s U2 value of one. Values below one indicates that the 
large Bayesian VAR has a superior forecasting performance to the naïve forecast. Corresponding 
values are presented in Appendix Tables D3 and D4. For the unemployment rate, the forecast four-
quarter ahead change in the unemployment rate is assessed, not the growth rate.  

Shown in Figure 3 are the Theil’s U2 statistics for 20 of the main variables included in 

the model for Q1 2010 to Q4 2018. Theil’s U2 is a non-linear metric in a similar vein 

as the relative MSFE in equation 7. The same caveat applies to interpreting this 

figure as it does to the two previous figures.  

Overall, the large Bayesian VAR performs relatively well.  The large Bayesian VAR 

performs better than the naïve forecast as measured by Theil’s U2 for both the 

annualised growth rate and the year-on-year growth rate in 12 cases. The naïve 

forecast performs better in 5 cases (goods exports, HICP (Harmonised Index of 

Consumer prices), personal consumption deflator, personal services consumption, 

and the unemployment rate). A further three cases straddle the Theil’s U2 value of 

one (wages, goods imports, and the labour force). In each of these three cases, the 

 
14 As the forecasts are evaluated using an expanding window, the ARMA model selection is carried 
out at each iteration and as a result the model selected for an individual variable may not 
necessarily be the same across the entire horizon evaluated. 



18 
 

large Bayesian VAR performs better than the naïve forecast at forecasting the year-

on-year growth rate, and worse at forecasting the annualised growth rate.   

Using the Diebold-Marino test to see if the forecasts from the large Bayesian VAR are 

statistically different from those of the naïve forecasts, the year-on-year forecast for 

government consumption was statistically different from the naïve forecast at the 5 

per cent significance level. and the large Bayesian VAR’s forecasts of goods imports 

and GNP were also statistically different from the naïve forecast at the 10 per cent 

significance level (Table D3). The naïve forecast performed better at forecasting the 

unemployment rate, and this was statistically different from the forecast from the 

large Bayesian VAR at the 5 per cent level. Other forecasts of the year-on-year 

growth rate from the large Bayesian VAR were not statistically different from the 

naïve forecast. 

For the annualised growth rate, forecasts for personal consumption, personal goods 

consumption, government consumption, and GDP were statistically different from 

the naïve forecast at the 10 per cent significance level (Table D4). While forecast for 

services exports were significantly different at the 5 per cent level. 

Figure 4 shows the plot of the relative MSFE between the large Bayesian VAR and the 

ARMA models for 20 variables, based on a sample from Q1 2010 to Q4 2018. In all but 

5 cases, the large Bayesian VAR performs better than the ARMA models (wages, 

services export, personal consumption deflator, the labour force and HICP). For the 

labour force, services export and the personal consumption deflator, the relative 

MSFE is only marginally above one. Whereas, for the HICP forecast of the ARMA 

model perform twice as well as the forecast of the large Bayesian VAR. 

In terms of whether the forecasts are statistically different from each other, the 

forecasts of UDD and GNP are statistically different from each other at the 1 per cent 

significance level for both the year-on-year growth and the annualised growth 

(Table D3 & Table D4). It is particularly encouraging that UDD—a key measure of the 

performance of the domestic economy—performs better than the ARMA model, and 

that the forecasts are statistically different. Finally, the year-on-year forecasts for 

personal disposable are statistically different from that of the ARMA models at the 

10 per cent significance level (Table D3). 



19 
 

Looking at the RMSFE, the forecasts for the annualised growth rate of UDD, personal 

consumption, personal goods consumption, personal disposable income, 

employment, labour force, HICP and the personal consumption deflator have an 

RMSFE below 2 percentage points (Table D4). 

Figure 4: Relative MSFE of the large Bayesian VAR versus ARMA models 

 
Sources: Author’s calculations. 
Note: The Vertical black line marks the relative MSFE value of one. Values below one indicates that 

the large Bayesian VAR has a superior forecasting performance to the ARMA model for that 
variable. For the unemployment rate, the forecast four-quarter ahead change in the 
unemployment rate is assessed, not the growth rate. Corresponding values are presented in 
Appendix Tables D3 and D4.  

 

4.4  Turning points and periods of turbulen ce  

Evaluating the performance of forecasting models also warrants a discussion on the 

model’s forecasting around turning points and during periods of extreme volatility. 

Some forecasting models can have a good performance over calm periods, i.e. 

periods not characterised by large swings in the economy, and some models may 

accurately predict turning points in macroeconomic variables. Relatively few 

models are able to do both. This section provides an overview of the large Bayesian 

VAR’s performance in forecasting the macroeconomy around the crisis years from 

2008-2010. 15 

 
15 Real-time data has not been used for this exercise. 
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While Bayesian shrinkage mitigates to some extent the problems associated with 

having a small sample to estimate parameters from, it is by no means a panacea. 

Given the short sample from which to draw estimates from, forecasts are the start of 

the horizon should be treated with caution and may not provide an accurate 

indication of the Model’s ability to forecast when there is more data available. For 

instance, forecasts of the growth rates for 2008 are based on only 32 quarters of 

data (2000 Q1 to 2007 Q4). 

Figure 5 shows the forecast one-year ahead growth rate versus the corresponding 

actual year-end growth rate for several key variables relating to the domestic 

economy for 2005-2018. We take 2007-2008 as the first turning point and assess the 

model’s performance in forecasting 2008 outturns, given data up to 2007. The 

forecasts errors for 2008 are quite large for some variables shown. For instance, the 

forecast growth for UDD is 5.6 percentage points off the actual growth rate. This is 

hardly surprising given that the model is only estimated with 32 quarters of data at 

this point. The forecast for personal services consumption is the most accurate at 

this point, only 0.9 percentage points from the actual growth rate. However, 

personal consumption growth did not experience as severe a drop off in growth as 

the other variables and was still a robust growth rate of 5.1 per cent for 2008. The 

forecast accuracy for 2009 improved for all variables, except for government 

consumption. In all cases the change in the growth rate between 2008 and 2009 was 

in the right direction. 

For most of the variables selected here, growth rates were at their lowest in 2009. 

The model forecasts reflect that relatively well, with forecasted growth rates for 

2010 picking up from the levels of growth in 2009. The model slightly overshoots in 

forecasting the pick–up in the level of the growth rate for 2010 for all variables, 

except for personal goods consumption. The forecast errors for 2010 are in general 

relatively small, given the short sample to that point and the volatility of actual data 

up over that period. In particular, the forecast errors for UDD, personal goods 

consumption, personal services consumption, and personal disposable income 

were all less than 0.6 percentage points in 2010. 

Taking a more general view of the models forecasting ability over this period, the 

model performs relatively well, despite the turbulence in data at the earlier periods 

in the sample and given the short sample at the start of the period from which 
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forecasts are derived. The average absolute error for all variables, except underlying 

investment, over this period are all below 2 percentage points. Perhaps 

unsurprisingly given the volatility of the series, the forecast errors for underlying 

investment are the largest. The average absolute error, in this case was 7.4 

percentage points. 

Table D5 shows how the large Bayesian VAR preforms relative to a naïve forecast 

and to ARMA forecast for this period. The large Bayesian VAR outperforms both the 

naïve forecast and the ARMA models in forecasting the year-end growth rates for 

2005-2018 for each variable. The Root Mean Square Errors are, for the most part, 

relatively small, with the notable exception of underlying investment. 

Figure 5: Forecast annual growth rates versus actual growth rates for 2005 to 2018 

 
Source: Author’s calculations. 
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Note: Figures show the forecast annual growth rate for the year t+1, using data up to year t, with the corresponding actual growth rate for 
year t+1. 

 

5. Discussion of results  

In general, the model has a good forecasting performance. In particular, for the key 

variables UDD and employment, the forecasting performance of the large Bayesian 

VAR is better than that of all other models/forecasts. In some cases, the forecasts for 

these variables are statically different than those of the other models. The 

performance of the large Bayesian VAR in forecasting wages is slightly more mixed. 

Some models perform better than the large Bayesian VAR in forecasting wages (for 

instance, the small VAR), however, the degree to which the other models 

outperform the large Bayesian VAR is low in this regard.  

More broadly, the large Bayesian VAR has a relatively good performance at 

forecasting other variables of the underlying performance of the Irish economy. 

These variables are less affected by the distortionary effects that the globalisation 

activities of small number of large multinational firms have on more headline 

national accounts data (such as GDP, GNP, investment etc.) in Ireland. In particular 

the forecasts of UDD, employment, personal consumption, personal goods 

consumption, government consumption, underlying investment and personal 

disposable income are all relatively better than other models. 

In terms of the headline variables, GDP, GNP, exports and imports, the large 

Bayesian VAR performs well. However, these variables are notoriously difficult to 

forecast for Ireland and while the large Bayesian VAR performs relatively well, the 

RMSFE can be quite large for these variables. 

On the flipside, the large Bayesian VAR performs worse than other models at 

forecasting the price variables. Both the naïve forecasts and the ARMA forecasts are 

better at forecasting HICP and the personal consumption deflator. In some 

instances, the naïve forecast of HICP are five times better than the forecasts from 

the large Bayesian VAR. However, according to the Diebold-Marino tests, these 

forecasts are not statically different from those of the large Bayesian VAR. The 
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RMSFE are also relatively low for these variables. However, this partly reflects that 

fact that these variables are not vary volatile. 

In terms of forecasting turning points, the model’s performance in forecasting the 

downturn in 2008 was poor. However, this was based on only 32 quarters of data. 

Promisingly, it did however, forecast, to some degree, a pickup in the level of growth 

rates over 2010-2011. It is too early to draw definitive conclusions on the models 

ability to forecasting turning points and it remains to be seen whether the model’s 

forecasting of downturns will improve as more data becomes available and more 

turning points—from which to assess the models ability to forecast these points—

occur. 

As a broader point, the inclusion of more variables may ultimately improve the 

forecasting performance of the model. However, as noted by Bańbura et al. (2010), 

the extent to which adding more variables improves the forecasting performance 

may face diminishing marginal returns. This may ultimately lead to a practical trade 

off in running the model.  

The model is based on a VAR framework which requires a balanced dataset. The 

current model is based on 46 different time-series. Given the extent of the data 

requirement for the current model, this can potentially pose practical limitations on 

its uses. Should data series be discontinued, the modeler will have to determine 

whether an alternative data series should be used in its place, or should the series 

be dropped entirely. Other issues relating to data availability can affect the ability to 

run the current model. For instance, for privacy reasons or data licensing issues, 

data for particular variables for certain quarters may be suppressed by the data 

provider.16 Running the model in this case may require the modeller to input a “best 

guess” estimate for the value of this variable in this particular quarter, given all 

other available data or alternatively, dropping the variable entirely, until such a 

time as the data becomes available. However, given priors are used, and Bayesian 

shrinkage around the distribution of the parameters are used, the effect of the error 

arising from the use of this best guess estimate will be reduced.  

 
16 For example, this was the case in the 2019 Q2 release of the Quarterly National Accounts by the 
CSO. Data on Machinery & Equipment, other Transport and Equipment, and Intangible Assets was 
suppressed by the CSO for confidentiality reasons.  
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A further consideration in the practical use of large Bayesian VAR models is that 

while they may be good at forecasting, the largely data drive nature of models such 

as these has its limitations. Due to their largely statistical and atheoretical nature, 

large Bayesian VAR models are largely a “black box” and it can be difficult to 

disentangle why a certain variable is displaying certain dynamics. Statistical models 

should often be used as a complement, alongside other models that have a greater 

foundation in economic theory.  
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6. Conclusion 

This paper builds a dynamic model of the Irish macroeconomy using a large number 

of variables. Using quarterly data from Q1 2000 to Q4 2018, a Large Bayesian VAR is 

estimated for Ireland. Bayesian shrinkage is applied to the estimated parameters to 

overcome the “curse of dimensionality”. The Model is tailored for a small open 

economy and treats as exogenous the import demand of the rest of the world. 

We assess the performance of the large Bayesian VAR in forecasting a wide set of 

variables. We show that the large Bayesian VAR can provide relatively good forecasts 

for a number of key variables of the domestic Irish economy. The model’s 

forecasting performance is assessed against the performance of other models, such 

as a small VAR, a Factor-Augmented VAR, ARMA models and against a naïve forecast. 

Overall, the large Bayesian VAR performs favourably in forecasting most variables 

examined. In particular, the model performed well at forecasting variables that 

capture the underlying Irish macroeconomy, namely, UDD, employment, personal 

consumption, personal goods consumption, underlying investment and personal 

disposable income. However, there are some variables for which the model 

performs relatively worse than naïve models, ARMA models or smaller VARs. If 

anything, this highlights the need to use multiple models in forecasting the 

macroeconomy, and underscores the approach taken by Conroy & Casey (2017) in 

using a suite of model’s approach.  
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Appendix A: Description of Dataset 

Table A2 gives a description of each variable used in the large Bayesian VAR and the 

source of the data. Transforms are given the following coding: 

Table A.1: Transformation Key 

Transform Code Description 

1 Differenced once 

2 Seasonally adjusted then differenced once 

3 Logged and then differenced 

4 Seasonally adjusted then logged and differenced 

5 Logged and then differenced twice 

Note: some variables from the CSO have already been seasonally adjusted, in which case this has been 
indicated in the description column of table A2.  

Table A.2: Description of variables  

Description Source Transform 

Industry Confidence Index EC 1 

Building Confidence Index EC 1 

ECB Deposit Rate ECB 1 

Private Credit  CSO 5 

Benchmark 10-year Government Bond yield R 1 

3-Month Euribor rate R 1 

Housing Stock CSO 5 

Index of External Goods Demand FC 4 

Index of External Services Demand FC 4 
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Table A.2 Continued 

Description Source Transform 

Real GDP seasonally adjusted CSO 3 

Real GNP seasonally adjusted CSO 3 

Real Personal Consumption seasonally adjusted CSO 3 

Real Government Consumption seasonally adjusted CSO 3 

Real Underlying investment FC 3 

Real Investment seasonally adjusted CSO 3 

Real Goods Export seasonally adjusted CSO 3 

Real Goods Import seasonally adjusted CSO 3 

Real Services Export seasonally adjusted CSO 3 

Real Services Import seasonally adjusted CSO 3 

Real Underlying Domestic Demand FC 4 

Real Personal Goods consumption CSO 4 

Real Personal Services Consumption CSO 4 

Unemployment rate CSO 2 

Participation rate CSO 2 

Real Machinery and Equipment seasonally adjusted CSO 3 

Real Intangibles seasonally adjusted CSO 3 

Real Building and construction Seasonally adjusted CSO 3 

Construction share of Employment FC 1 

Improvements CSO 3 

Labour Force CSO 2 

Employment CSO 4 

Real Transaction Costs CSO 4 

Real Other Building and Construction CSO 4 

Real Dwellings CSO 4 

Real Personal Disposable Income CSO 4 

Real Compensation of Employees CSO 4 

Real Effective Exchange Rate FC 4 

Personal Consumption Deflator CSO 4 

Real House Prices CSO 3 

Oil prices R 3 

Energy prices ES 4 

Harmonised Index of Consumer Prices CSO 4 

Consumer Confidence Index EC 1 

Services Confidence Index EC 1 

Retail Confidence Index EC 1 

Sources: CSO = Central Statistics office, ECB = European Central Bank, EC = European Commission, 

ES = Eurostat, FC = Irish Fiscal Advisory Council, R = Reuters. 
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Appendix B: Implementing the Minnesota prior 

Following Bańbura et al. (2010) we rewrite the VAR system as a system of 

multivariate regressions to show how the Minnesota prior is implemented: 

𝑌𝑇×𝑁 = 𝑋𝑇×𝑁𝐵𝐾×𝑁 + 𝑈𝑇×𝑁 (9) 

Where 𝑌 = (𝑌1,… , 𝑌𝑇)′, 𝑋 = (𝑋1, … , 𝑋𝑇)′,with 𝑋𝑡 = (𝑌𝑡−1
′ , … , 𝑌𝑡−1

′ , 1)′, 𝑈 =

(𝑢1, … , 𝑢𝑇)′, and 𝐵 = (𝐴1,… , 𝐴𝑃 , 𝑐)′ is the 𝑘 × 𝑛 matrix containing all coefficients 

with 𝑘 = 𝑛𝑝 + 1. The normal inverted Wishart prior then takes the form: 

𝑣𝑒𝑐(𝐵)|Ψ~𝑁(𝑣𝑒𝑐(𝐵0),Ψ⨂Ω0)     and  𝜓 ~ 𝑖𝑊(𝑆0, 𝛼0) (10) 

With the prior parameters, 𝐵0, Ω0, 𝑆0  and 𝛼0 chosen so that the moments coincide 

with those in equation 3 and the expectation of Ψ is equal to the fixed residual 

covariance matrix Σ of the Minnesota prior. 

The prior is implemented by adding dummy observations to the system.  

Adding 𝑇𝑑  dummy observations, 𝑌𝑑 and  𝑋𝑑  to the system; Equation 9 is then 

equivalent to imposing  the normal inverted Wishart prior with 𝐵0 = (𝑋𝑑
′𝑋𝑑)

−1𝑋𝑑
′ 𝑌𝑑, 

Ω0 = (𝑋𝑑
′𝑋𝑑)

−1,  𝑆0 = (𝑌𝑑 −𝑋𝑑𝐵0)
′(𝑌𝑑 − 𝑋𝑑𝐵0) and 𝛼0 = 𝑇𝑑 − 𝑘. The following 

dummy observations are included in order to retain the principles of the Minnesota 

prior; 

𝑌𝑑 =

(

  
 

𝑑𝑖𝑎𝑔(𝛿1𝜎1,… , 𝛿1𝜎𝑛) 𝜆⁄

0𝑛(𝑝−1)×𝑛
⋯

𝑑𝑖𝑎𝑔(𝜎1, … , 𝜎𝑛)…
01×𝑛 )

  
 

, 𝑋𝑑 =

(

 
 

𝐽𝑝⨂𝑑𝑖𝑎𝑔(𝜎1, … , 𝜎𝑛) 𝜆⁄ 0𝑛𝑝×1
⋯

0𝑛×𝑛𝑝
…

01×𝑛𝑝

…
0𝑛×1…
𝜀

)

 
 

 (11) 

where 𝐽𝑝 = 𝑑𝑖𝑎𝑔(1,2,… , 𝑝). The first block of dummies, i.e. 𝑌𝑑 , implements the prior 

belief on the autoregressive coefficients, the second block of dummies (first column 

in 𝑋𝑑), implements the prior on the covariance matrix and the third block 

implements the diffuse prior on the intercept (with 𝜀 a small number, which we 

arbitrarily set to 0.1).17 In principle, parameters should be set using only prior 

knowledge, but Bańbura et al. (2010) follow Litterman (1986) and set the scale of the 

 
17 This is also the approach taken by de Menezes Barboza & Vasconcelos (2019).   
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parameter 𝜎𝑖
2 equal to the variance of the residuals of a univariate AR(p) model for 

the variable 𝑖. We differ from this approach, and use the approach taken by de 

Menezes Barboza & Vasconcelos (2019) and simply use 𝜎𝑖
2 the variance of the ith 

variable. In circumstances where non-stationary time series are modelled, this may 

lead to very high variances, but this would only make the priors less informative for 

these variables.18 Using the dummies above, we now have an augmented system for 

equation 9: 

𝑌𝑇∗×𝑁
∗ = 𝑋𝑇∗×𝑁

∗ 𝐵𝐾×𝑁 +𝑈𝑇∗×𝑁
∗  (12) 

where 𝑇∗ = 𝑇 + 𝑇𝑑 , 𝑌∗ = (𝑌′, 𝑌𝑑
′)′, 𝑋∗ = (𝑋′, 𝑋𝑑

′ )′ and 𝑈∗ = (𝑈′, 𝑈𝑑
′ )′. The posterior 

is then of the form: 

𝑣𝑒𝑐(𝐵)|Ψ, Y~𝑁(𝑣𝑒𝑐(𝐵̂),Ψ⨂(𝑋∗
′
𝑋∗)−1)   and    𝜓|𝑌 ~ 𝑖𝑊(Σ̂, 𝑇 + 𝑇𝑑 + 2 + 𝑘) (13) 

which has coefficients that coincide with those estimated by OLS regression of  𝑌∗ 

and  𝑋∗. 

To add exogenous variables to the model, given the system in equation 12, and 

foreign variables 𝑋𝑓 , 𝑋∗ becomes 𝑋∗ = (𝑋′, 𝑋𝑑
′ , 𝑋𝑓

′)′ with the size of the matrix B 

adjusted accordingly for the dimension of 𝑋𝑓 . 

In terms of forecasting, obtaining the one-step-ahead predictive distribution is 

computationally easy as the natural conjugate prior has an analytical form, so no 

simulation is required. However, when forecasting more than one period ahead, an 

analytical formula does not exist. In this case, we use the direct forecasting method 

in order to avoid the computationally intensive predictive simulation that would be 

required otherwise. This approach does not systematically underperform (or 

indeed, overperform) other methods (see Koop, 2013).   

 

 
18 In any event, this is not an issue here, as all variables are transformed to stationarity prior to 
modelling. 
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Appendix C: Calibration of λ  

The calibration was carried out using the procedure outlined in Section 3 with data 

from Q1 2000 to Q4 2009. The one-step ahead forecasting procedure was only 

carried out over the horizon of Q1 2005 to Q4 2009. This was to allow the small VAR 

to be estimated, and provide an additional window of data so as to reduce the 

possibility of over fitting the small VAR. The lag length for the small VAR was 

selected by analysing various metrics and comparing forecasting performances of 

the small VAR with different lag lengths. The lag length of one provided the best out-

of-sample forecasting performance and was the lag length selected based on the 

Schwarz Criterion and the Hanna-Quinn Criterion. The simple average of the index 

for external goods demanded and services demanded was used instead of including 

both indices in order to further reduce the problem of overfitting for the small VAR. 

Figure C.1: Calibration of 𝝀 

 
Sources: Author’s calculations. 
Note: The global minimum of the absolute difference of the Mean Squared Forecast Error between 
the Small VAR and the large Bayesian VAR for the key variables was achieved with  𝜆 = 0.188. 
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Appendix D: Forecast performance evaluation 

 

Table D1: Forecasting performance relative to the small VAR for Q1 2010 to 

Q4 2018 

Variable Y-o-Y  Annualised Growth  

Underlying Domestic Demand 0.47 0.49 

Wage 1.02 1.01 

Employment  0.54 0.55* 

Sources: Author’s calculations. 
Note: This table corresponds to values presented in Figure 1. Values for the ARMA column here 
correspond to the relative MSFE in equation 12, where Model = small VAR. Values below one 
indicates superior forecasting performance relative to the small VAR. The Diebold-Mariano test 
was carried out to determine whether the forecasts for the large Bayesian VAR were significantly 
different from those of the small VAR. Values with *, ** or *** correspond to forecasts that are 

significantly different from each other at the 10%, 5% and 1% significance levels respectively. 
However, caution should be taken when interpreting these significance values, given the sample 
that there are only 36 observations from which to carry out the test. 

 

Table D2: Forecasting performance relative to the Factor-Augmented VAR for 

Q1 2010 to Q4 2018 

Variable Y-o-Y   Annualised Growth  

Underlying Domestic Demand 0.12 0.17 

Wage 0.42 0.57 

Employment  0.13 0.18 
Sources: Author’s calculations. 
Note: This table corresponds to values presented in Figure 2. Values presented here correspond to 
the relative MSFE in equation 12, where Model = FAVAR. Values below one indicates superior 

forecasting performance relative to the FAVAR. The Diebold-Mariano test was carried out to 
determine whether the forecasts for the large Bayesian VAR were significantly different from those 
of the Factor Augmented VAR. Values with *, ** or *** correspond to forecasts that are significantly 
different from each other at the 10%, 5% and 1% significance levels respectively. However, 
caution should be taken when interpreting these significance values, given the sample that there 
are only 36 observations from which to carry out the test. 

 



34 
 

Table D3: Four-quarter ahead year-on-year forecasting performance for Q1 

2010 to Q4 2018 

Variable Theil’s U2 RMSFE ARMA 

Underlying Domestic 

Demand 
0.49 0.022 0.57*** 

Wages 0.59 0.036 1.32 

Unemployment Rate 1.35** 1.420 0.73 

Personal Consumption 0.97 0.023 0.77 

Personal Goods 
Consumption 

0.49 0.026 0.40 

Personal Services 
Consumption 

1.54 0.031 0.84 

Government 
Consumption 

0.82** 0.033 0.41 

Underlying Investment 0.88 0.135 0.97 

Personal Disposable 

Income 
0.70 0.031 0.66* 

Employment 0.80 0.020 0.97 

Labour Force 0.37 0.016 1.06 

Gross Domestic Product 0.90 0.065 0.76 

Gross National Product 0.53* 0.052 0.52*** 

Real Effective Exchange 

Rate 
0.92 0.100 0.87 

Goods Import 0.77* 0.094 0.79 

Services Import 0.95 0.179 0.87 

Goods Export 3.10 0.161 0.83 

Services Export 0.56 0.064 1.18 

HICP 5.07 0.017 2.48 

Personal Consumption 

Deflator 
1.55 0.021 1.23 

Sources: Author’s calculations 
Note: This table corresponds to values presented in Figure 3. For the unemployment rate, the 
forecast four-quarter ahead change in the unemployment rate is assessed, not the growth rate.  
Values for the ARMA column here correspond to the relative MSFE in equation 12, where Model = 

ARMA. Values for Theil’s U2 and ARMA below 1 indicate that the large Bayesian VAR has a superior 
forecasting performance to the that of the naïve forecast and the ARMA forecast respectively. The 
Diebold-Mariano test was carried out to determine whether the forecasts for the large Bayesian 
VAR were significantly different from those of the naïve forecast (Theil’s U2 column) and the ARMA 
forecasts. Values with *, ** or *** correspond to forecasts that are significantly different from each 
other at the 10%, 5% and 1% significance levels respectively. However, caution should be taken 
when interpreting these significance values, given the sample that there are only 36 observations 

from which to carry out the test. 
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Table D4: Four-quarter ahead annualised growth forecasting performance 

for 2010 to 2018 

Variable Theil’s U2 RMSFE ARMA 

Underlying Domestic 

Demand 
0.15 0.013 0.66*** 

Wages 1.25 0.021 1.13 

Unemployment Rate 1.35** 1.420 0.73 

Personal Consumption 0.32* 0.015 0.76 

Personal Goods 
Consumption 

0.92* 0.016 0.39 

Personal Services 
Consumption 

1.22 0.020 0.98 

Government 
Consumption 

0.42* 0.023 0.43 

Underlying Investment 0.66 0.084 0.94 

Personal Disposable 

Income 
0.82 0.019 0.68 

Employment 0.34 0.012 0.87 

Labour Force 1.58 0.010 1.04 

Gross Domestic Product 0.41* 0.045 0.78 

Gross National Product 0.20 0.036 0.54*** 

Real Effective Exchange 

Rate 
0.87 0.064 0.82 

Goods Import 1.03 0.063 0.87 

Services Import 0.90 0.116 0.88 

Goods Export 1.13 0.108 0.77 

Services Export 0.33** 0.043 1.17 

HICP 5.72 0.010 3.07 

Personal Consumption 

Deflator 
1.02 0.012 1.11 

Sources: Author’s calculations. 
Note: This table corresponds to values presented in Figure 4. For the unemployment rate, the 
forecast four-quarter ahead change in the unemployment rate is assessed, not the growth rate. 
Values for the ARMA column here correspond to the relative MSFE in equation 12, where Model = 

ARMA. Values for Theil’s U2 and ARMA below 1 indicate that the large Bayesian VAR has a superior 
forecasting performance to the that of the naïve forecast and the ARMA forecast respectively. The 
Diebold-Mariano test was carried out to determine whether the forecasts for the large Bayesian 
VAR were significantly different from those of the naïve forecast (Theil’s U2 column) and the ARMA 
forecasts. Values with *, ** or *** correspond to forecasts that are significantly different from each 
other at the 10%, 5% and 1% significance levels respectively. However, caution should be taken 
when interpreting these significance values, given the sample that there are only 36 observations 

from which to carry out the test. 
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Table D5: 1-Year ahead forecasting performance for 2005 to 2018 

Variable Theil’s U2 RMSFE ARMA 

Underlying Domestic 

Demand 
0.33 0.019 0.92 

Wages 0.48 0.023 0.47 

Personal Consumption 0.18 0.019 0.52 

Personal Goods 
Consumption 

0.49 0.019 0.58 

Personal Services 
Consumption 

0.66 0.013 0.62 

Government 
Consumption 

0.58 0.024 0.52 

Underlying Investment 0.72 0.087 0.87 

Personal Disposable 

Income 
0.62 0.017 0.68 

Employment 0.28 0.012 0.80 

Sources: Author’s calculations. 
Note: This table corresponds to values presented in Figure 5. Values for the ARMA column here 
correspond to the relative MSFE in equation 12, where Model = ARMA.  Values correspond to 

forecasts shown in Figure 5 for the annual growth rates from 2005 to 2018. Values for Theil’s U2 
and ARMA below 1 indicate that the large Bayesian VAR has a superior forecasting performance to 
the that of the naïve forecast and the ARMA forecast respectively. The Diebold-Mariano test was 
not carried out on these values, given that short sample size (only 14 observations)
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